

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2588-2591

Indium(III) chloride-catalyzed oxidative cleavage of carbon–carbon multiple bonds by *tert*-butyl hydroperoxide in water—a safer alternative to ozonolysis

Brindaban C. Ranu*, Sukalyan Bhadra, Laksmikanta Adak

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India

Received 19 January 2008; revised 13 February 2008; accepted 16 February 2008 Available online 21 February 2008

Abstract

An efficient and general method for the oxidative cleavage of alkenes and alkynes using *tert*-butyl hydroperoxide and indium(III) chloride as catalyst in water to give the corresponding carboxylic acids or ketones has been achieved. The reaction conditions are compatible with sensitive moieties such as peptide bonds, *tert*-butyl carboxylic esters and *N*-Boc-protected tryptophan. The catalyst could be recycled.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Oxidative cleavage; Alkenes; tert-Butyl hydroperoxide; Indium(III) chloride; Water

The oxidative cleavage of alkenes to carboxylic acids and ketones is a very useful reaction in organic synthesis.¹ The commonly used reagents for this transformation include ozone and several metal oxides such as OsO4 and RuO_4 in combination with a co-oxidant like NaIO₄ and Oxone.^{1,2} Although ozonolysis is a very reliable method, a major issue is the concern for safety; serious or fatal accidents may occur.³ In addition, ozone gas is highly toxic and damaging to human health and its generation requires special instrumentation. On the other hand OsO_4^4 because of its high volatility and toxicity^{4c} is not environmentally acceptable and thus restricts its use for large-scale applications in industry. Ruthenium compounds,⁵ being very expensive, are also disadvantaged. An efficient and green protocol for the oxidation of alkenes to the corresponding carboxylic acids using hydrogen peroxide and Na₂WO₄ as a catalyst has been demonstrated by Noyori et al.^{6e,g} Other procedures involving relatively less toxic reagents⁶ such as titanium based catalysts^{6a} and heteropolyacids on oxide

0040-4039/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.089

supports^{6b} have been reported. However, they lack general applicability and do not provide satisfactory yields. Therefore, a simple, efficient and safe procedure for oxidative cleavage of olefins, which can excel ozonolysis, is highly desirable. Recently, a gold(I)-catalyzed oxidative cleavage of alkenes to carbonyl compounds using *tert*-butyl hydroperoxide as oxidant and neocuproine as ligand was reported.^{6f} This has led us to report our results on the oxidative cleavage of alkenes and alkynes with *t*-BuOOH catalyzed by InCl₃ in H₂O in the absence of any ligand (Scheme 1).

^{*} Corresponding author. Tel.: +91 33 24734971; fax: +91 33 24732805. *E-mail address:* ocbcr@iacs.res.in (B. C. Ranu).

The experimental procedure is very simple.⁷ A mixture of alkene/alkyne, *t*-BuOOH and InCl₃ in water was heated at 90 °C for a certain period of time (TLC). Standard work up provided the product. The aqueous solution of InCl₃ and *t*-BuOH left after work up was recycled for subsequent reactions without any appreciable loss of efficiency. Several experiments were carried out using various reagents and catalysts to optimize the reaction conditions. When *t*-BuOOH was replaced by H_2O_2 the yields of products did not rise above 25%. InCl₃ gave the best results of the several Lewis acid catalysts investigated (Table 1).

Several diversely substituted alkenes underwent clean cleavage using this procedure to furnish the corresponding products. The results are summarized in Table 2. The open chain mono- substituted (Table 2, entries 1-5) and 1,2disubstituted (Table 2, entries 6-7) olefins were oxidized to the corresponding carboxylic acids, while the 1,1-disubstituted substrate (Table 2, entry 11) provided the corresponding ketone. The unsubstituted cyclic olefins. cyclohexene (Table 2, entry 8) and cyclooctene (Table 2, entry 10) produced adipic and suberic acids, respectively, in very high yields. These carboxylic acids were obtained as crystals after work up and did not require any further purification. These reactions were also scaled up to multigram quantities without any difficulty. Both adipic and suberic acids are industrially very important^{6e} and this procedure may serve as an alternative to existing methods.⁶ The substituted cyclic olefin, 1-methylcyclohexene (Table 2, entry 9), upon oxidative cleavage, furnished the corresponding keto acid. The exocyclic olefins (entries 12 and 13) were cleaved to the corresponding ketones very efficiently. A few complex olefins containing peptide bonds together with t-butyl ester groups and Boc-protected tryptophan moiety (Table 2, entries 14-17) underwent cleavage to the corresponding carboxylic acids without affecting these sensitive functionalities. These substituted peptide carboxylic acids are highly useful compounds and are not easy to prepare using standard methods.⁸ The optically active peptides (Table 2, entries 15-17) retained their optical purity under the reaction conditions. The aromatic as well as aliphatic alkynes (Table 2, entries 18-21) were also cleaved to produce the corresponding carboxvlic acids without the formation of α -diketones^{9a} or $\alpha.\alpha'$ dioxygenated derivatives.9b

Table 1 Results of the cleavage reaction using different Lewis acids

	Lewis acid	O II
⊃h∕∕`	^t BuOOH, H ₂ O	Ph
	9 h, 90 °C	

Lewis acid	Yield ^a (%)	Lewis acid	Yield ^a (%)
CuCl ₂	38	ZnCl ₂	39
CeCl ₃	37	TiCl ₄	55
FeCl ₃	42	InCl ₃	84

^a Yields calculated from ¹H NMR spectra of the crude products.

Table	e 2
rabi	5 2

Oxidative cleavage of alkenes and alkynes

Entry	Substrate	Product	Time (h)	Yield ^a (%)	Ref.
1	Ph [^]	PhCO ₂ H	8	88	4c
2	MeO	MeO CO ₂ H	8.5	78	6e
3	CI	CI CO ₂ H	8.6	75	6e
4		CO ₂ H	9	81	11
5	$CH_3(CH_2)_5CH = CH_2$	CH ₃ (CH ₂) ₅ COOH	8	81	5d
6	Ph Ph	PhCO ₂ H	8.5	83	4c
7	Ph	PhCO ₂ H	8	85	4c
8	\bigcirc	HO ₂ C(CH ₂) ₄ CO ₂ H	9	92	5d
9	\bigcirc	CH ₃ CO(CH ₂) ₄ CO ₂ H	8.2	84	6b
10	\bigcirc	HOOC(CH ₂) ₆ CO ₂ H	8	94	5d
11	Ph	Ph O	8	84	4c
12		° C	8	80	11
13	u ^t Bu	O U tBu	8.2	68	6e
14	(CH ₂) ₈ CONH BnO ₂ C	$(CH_2)_8CONH$ CO_2H $(CH_2)_2$ BnO_2C	9	72	
15	CH ₂) ⁴ N (CH ₂) ⁸ N H CO ₂ Me	O (CH ₃) ^从 ₈ N CO ₂ H H CO ₂ H H	8.5	78	_
16	$ \begin{array}{c} O \\ (CH_2)_8^{\text{H}} N \\ H \end{array} \begin{array}{c} Ph \\ CO_2^{\text{t}} Bu \\ H \end{array} $	$\begin{array}{c} O \stackrel{\stackrel{\scriptstyle \leftarrow}{\scriptstyle \leftarrow} Ph}{(CH_3)_8^{I\!\!\!L}} N^{\stackrel{\scriptstyle \leftarrow}{\scriptstyle \leftarrow}} CO_2{}^t Bu \\ \stackrel{\scriptstyle \leftarrow}{\scriptstyle CO_2 H} H \end{array}$	10	68	_
17	$(CH_2)^{\mathcal{B}}_{8} N \overset{\underline{CO}_2Me}{H} \overset{\mathcal{CO}_2Me}{N} \overset{\mathcal{CO}_2Me}{H} \overset{\mathcal{CO}_$	$(CH_3)_8 N \xrightarrow{CO_2Me}_{N \to 0} O_2Me$	10	62	_
18	Ph-C=CH	PhCO ₂ H	9	76	4c
19	CH ₃ (CH ₂) ₃ C=CH	CH ₃ (CH ₂) ₃ CO ₂ H	12	68	5d
20 21	Ph-C=C-Ph Et-C=C-Et	PhCO ₂ H EtCO ₂ H	11 12	71 64	5d 5d

^a Isolated yields of pure products (¹H and ¹³C NMR).

The reactions, are in general very clean and high yielding and no side products were isolated. The majority of the products were obtained in high purities (>98%) after work up and a few were purified by crystallization or column chromatography. When the reaction was carried out

Scheme 2.

Fig. 1.

with styrene using t-BuOOH alone in the absence of InCl₃ for a prolonged period (18 h), only 10% of benzoic acid was obtained. On the other hand, InCl₃ alone without TBHP did not initiate the reaction at all. We suggest that the oxidative cleavage occurred through a number of steps involving epoxide formation followed by hydrolysis with H₂O to give a diol which was then cleaved to a carboxylic acid or ketone (Scheme 2). The isolation of cyclohexene oxide, 1,2-cyclohexanediol and adipic acid at different stages of the cleavage reaction of cyclohexene established the intermediacy of these compounds as outlined in Scheme 2. The progress of the reaction through these intermediates is depicted in Figure 1.

Both pure cyclohexene oxide and 1,2-cyclohexane diol when treated with TBHP/InCl₃ using this procedure produced adipic acid in nearly quantitative yields. The argument for hydrolysis of the intermediate epoxide by H₂O gained support by the formation of 1-hydroxy-2-methoxycyclohexane when water was replaced by methanol for the cleavage of cyclohexene oxide. The formation of an epoxide from an olefin by TBHP is also precedent.¹⁰

This procedure has advantages to that catalyzed by AuCl in the presence of neocuproine.^{6f} Our method does not require any ligand, whereas in other procedures virtually no oxidation occurred without ligand. The compatibility of sensitive functionalities such as a peptide bond, a tert-butyl carboxylic ester and N-Boc-protected tryptophan and cleavage of exocyclic double bonds were not been addressed in the Au(I)-catalyzed method. The yields of products and reaction time in our method are, in general, much better than those catalyzed by AuCl particularly, the yield in the cleavage of α -methyl styrene (Table 2, entry 11), 84% (8 h) compared to 39% (36 h). The catalyst, InCl₃

is cheaper than AuCl. The final products in the present method are carboxylic acids/ketones, whereas in the other procedure, the products are aldehydes. Thus, this method is complementary to the Au(I)-catalyzed method.^{6f}

In conclusion, we have developed a very clean, efficient and general method for the oxidative cleavage of alkenes and alkynes using tert-butyl hydroperoxide and indium-(III) chloride as catalysts in water to give the corresponding carboxylic acids or ketones. The advantages of this method are the general applicability to a wide variety of alkenes and alkynes, compatibility with sensitive functionalities, one-pot cleavage of exocyclic double bonds to ketones and high yields. The use of water as the reaction medium, reusability of the aqueous solution of catalyst and no need for waste disposal, make this procedure greener, safe and potentially useful for industrial applications.

Acknowledgements

We are pleased to acknowledge the financial support from CSIR, New Delhi (Grant No. 01(1936)/04/EMR-II) for this investigation. S.B. and L.A. are also grateful to CSIR for their fellowships.

References and notes

- 1. (a) Shing, T. K. M. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 7, pp 703-716; (b) Hudlicky, M. Oxidations in Organic Chemistry. In ACS Monograph 186; American Chemical Society: Washington, DC, 1990; p 77.
- 2. (a) Bailey, P. S. Chem. Rev. 1958, 58, 925-1010; (b) Larock, R. C. In Comprehensive Organic Transformations, 2nd ed.; Wiley-VCH: New York, 1999; pp 1213-1215.
- 3. (a) Ogle, R. A.; Schumacher, J. L. Process. Saf. Prog. 1998, 17, 127-133; (b) Koike, K.; Inou, G.; Fukuda, T. J. Chem. Eng. Jpn. 1999, 32, 295 - 299
- 4. (a) Henry, J. R.; Weinreb, S. M. J. Org. Chem. 1993, 58, 4745; (b) Travis, B. R.; Narayan, R. S.; Borhan, B. J. Am. Chem. Soc. 2002, 124, 3824-3825; (c) Lee, K.; Kim, Y.-H.; Han, S. B.; Kang, H.; Park, S.; Seo, W. S.; Park, J. T.; Kim, B.; Chang, S. J. Am. Chem. Soc. 2003, 125, 6844-6845; (d) Whitehead, D. C.; Travis, B. R.; Borhan, B. J. Am. Chem. Soc. 2006, 47, 3797-3800.
- 5. (a) Cornely, J.; Ham, L. M. S.; Meade, D. E.; Dragojlovic, V. Green Chem. 2003, 5, 34-37; (b) Zimmermann, F.; Meux, E.; Mieloszynski, J.-L.; Lecuire, J.-M.; Oget, N. Tetrahedron Lett. 2005, 46, 3201-3203; (c) Yang, D.; Chen, F.; Dong, Z.-M.; Zhang, D.-W. J. Org. Chem. 2004, 69, 2221-2223; (d) Che, C.-M.; Yip, W.-P.; Yu, W.-Y. Chem. Asian J. 2006, 1, 453-458.
- 6. (a) Lee, S.-O.; Raja, R.; Harris, K. D. M.; Thomas, J. M.; Johnson, B. F. G.; Sankar, G. Angew. Chem., Int. Ed 2003, 42, 1520-1523; (b) Brooks, C. D.; Huang, L.-C.; McCarron, M.; Johnstone, R. A. W. Chem. Commun. 1999, 37-38; (c) Freitag, J.; Muchter, M.; Ondruschka, B. Green Chem. 2003, 5, 291-295; (d) Antonelli, E.; D'Aloisio, R.; Gambaro, M.; Fiorani, T.; Venturello, C. J. Org. Chem. 1998, 63, 7190-7206; (e) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 1977-1986; (f) Xing, D.; Guan, B.; Cai, G.; Fang, Z.; Yang, L.; Shi, Z. Org. Lett. 2006, 8, 693-696; (g) Sato, K.; Aoki, M.; Novori, R. Science 1998, 281, 1646-1647.
- 7. Representative procedure for the oxidative cleavage of cyclohexene to adipic acid (Table 2, entry 8). A mixture of cyclohexene (82 mg,

l mmol), indium(III) chloride (44 mg, 20 mol%) and *tert*-butyl hydroperoxide (0.5 mL, 70%, 3.8 mmol) in water (2.5 mL) was heated at 90 °C for 9 h (TLC). The cooled reaction mixture was then extracted with ethyl acetate (3×10 mL) and the extract was washed with brine (2×5 mL) and dried (Na₂SO₄). Evaporation of the solvent furnished crystals of adipic acid (134 mg, 92%) of more than 98% purity. (If necessary, the crude products were purified by column chromatography over silica gel.) The melting point and spectroscopic data (IR, ¹H and ¹³C NMR) of the products were in good agreement with those of an authentic sample of adipic acid.¹¹ The aqueous solution of InCl₃ and *t*-BuOH left after work up, was recycled for six subsequent reactions without any appreciable loss of efficiency.

This procedure was followed for the oxidative cleavage of all the alkenes and alkynes listed in Table 2. Although this procedure was based on mmol scale, the reaction was also carried out on multigram quantities without any difficulty. All the products except four (Table 2, entries 14–17) are known compounds and were identified by comparison of their melting points, when applicable, and spectroscopic data (IR, ¹H and ¹³C NMR) with those reported (see references in Table 2). The novel compounds (Table 2, entries 14–17) were characterized by their spectroscopic data (IR, ¹H and ¹³C NMR, HRMS) which are provided below.

9-(2-Benzyloxycarbonyl-ethylcarbamoyl)-nonanoic acid (Table 2, entry 14): Yellow viscous oil; IR (neat) 3300, 2929, 2856, 1733, 1653, 1170 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.02–1.21 (m, 8H), 1.53–1.55 (m, 4H), 2.11 (t, J = 7.56 Hz, 2H), 2.27–2.41 (m, 2H), 2.57 (t, J = 6.01 Hz, 2H), 3.50 (q, J = 5.91 Hz, 2H), 5.12 (s, 2H), 6.14 (br s, 1H), 7.29–7.38 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 23.8, 25.6, 29.0 (2C), 29.1, 29.2, 34.2, 34.9, 36.7, 43.8, 66.6, 128.3 (2C), 128.5, 128.7 (2C), 135.7, 172.6, 173.4, 177.3; HRMS *m*/*z* calcd for C₂₀H₂₉NO₅Na [M+Na]⁺ 386.2046; found: 386.2127.

9-(1-Methoxycarbonyl-ethyl carbamoyl)-nonanoic acid (Table 2, entry 15): yellow viscous liquid; IR (neat) 3388, 3288, 2931, 2856, 1737, 1651, 1546, 1215, 1026, 1004 cm⁻¹; ¹H NMR (300 MHz, CDCl₃ + DMSO- d_6) δ 1.10–1.23 (m, 12H), 1.30–1.44 (m, 3H), 1.98–2.12 (m, 4H), 3.56 (s, 3H), 4.22–4.30 (m, 1H), 7.72 (d, J = 5.98 Hz,

1H); ¹³C NMR (75 MHz, CDCl₃ + DMSO- d_6) δ 16.2, 24.2, 27.6, 27.7, 27.8, 27.9, 28.1, 34.3, 34.4, 46.5, 50.7, 171.9, 172.2, 173.5; HRMS *m/z* calcd for C₁₄H₂₅NO₅K [M+K]⁺ 326.1733; found: 326.1880; [*a*]_D²⁶ -18.9 (*c* 5.00, CHCl₃).

9-(1-tert-Butoxycarbonyl-2-phenyl-ethyl carbamoyl)-nonanoic acid (Table 2, entry 16): viscous yellow liquid; IR (neat) 3062, 3028, 2927, 2854, 1712, 1643, 1481, 1242, 1193, 1159 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.18–1.42 (m, 16H), 1.53–1.60 (m, 5H), 1.97– 2.14 (m, 2H), 2.27 (t, J = 7.39 Hz, 2H), 2.96 (d, J = 5.93 Hz, 2H), 4.71 (q, J = 7.07 Hz, 1H), 7.02–7.20 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 25.0, 28.3, 29.3 (2C), 29.4 (3C), 29.5, 29.7, 30.0, 34.4(2C), 53.8, 82.9, 127.3, 128.8 (2C), 129.7 (2C), 135.6, 179.8, 179.9, 180.1; HRMS m/zcalcd for C₂₃H₃₅NO₅Na [M+Na]⁺ 428.2413; found: 428.2415; [α]_D²⁶ +5.1 (c 5.00, CHCl₃).

3-[2-(9-Carboxy-nonanoylamino)-2-methoxycarbonyl-ethyl]-indole-1carboxylic acid tert-butyl ester (Table 2, entry 17): yellow viscous liquid; IR (neat) 3435, 3250, 2850, 1720, 1658, 1216, 1053, 1028, 1007, 823, 702 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.23–1.45 (m, 10H), 1.56–1.68 (m, 9H), 1.99–2.04 (m, 4H), 2.15 (t, J = 7.45 Hz, 2H), 3.15– 3.29 (m, 2H), 3.67 (s, 3H), 4.08 (q, J = 7.14 Hz, 1H), 7.17–7.46 (m, 5H), 8.07 (d, J = 7.05 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 25.5, 28.0 (3C), 28.8, 29.0, 29.1, 29.2, 29.3, 33.7, 36.5, 52.3, 52.4, 60.4, 83.7, 114.9, 115.3, 118.8, 122.5, 124.0, 124.5, 130.5, 135.2, 172.2, 173.1, 174.9, 175.8; HRMS *m*/*z* calcd for C₂₇H₃₈N₂O₇K [M+K]⁺ 541.2316; found: 541.2417; [α]²⁷_D +37.3 (*c* 5.00, CHCl₃).

- Nielsen, T. E.; Le Quement, S. T.; Meldal, M. Org. Lett. 2007, 9, 2469–2472.
- (a) Che, C.-M.; Yu, W.-Y.; Chan, P.-M.; Cheng, W.-C.; Peng, S.-M.; Lau, K.-C.; Li, W.-K. J. Am. Chem. Soc. 2000, 122, 11380–11392; (b) Chabaud, B.; Sharpless, K. B. J. Org. Chem. 1979, 44, 4202–4204.
- (a) Yin, G.; Danby, A. M.; Kitko, D.; Carter, J. D.; Scheper, W. M.; Busch, D. H. *Inorg. Chem.* **2007**, *46*, 2173–2180; (b) Choudary, B. M.; Pal, U.; Kantam, M. L.; Ranganath, K. V. S.; Sreedhar, B. *Adv. Synth. Catal.* **2006**, *348*, 1038–1042.
- Pouchert, C. J. In *The Aldrich Library of NMR Spectra*, 2nd ed.; Aldrich Chemical: Milwaukee, 1983; Vols. 1–2.